Rethinking Pre-Trained Feature Extractor Selection in Multiple Instance Learning for Whole Slide Image Classification

Bryan Wong¹, Sungrae Hong¹, Mun Yong Yi²

¹Graduate School of Data Science, KAIST, Daejeon, South Korea ²Department of Industrial and Systems Engineering, KAIST, Daejeon, South Korea

Poster No. Session 2 - 63 (1571090653)

INTRODUCTION

✓ Background

- Multiple instance learning (MIL) has become a preferred method for gigapixel whole slide image (WSI) classification without requiring patch-level annotations
- Current research primarily relies on **embedding-based MIL** approaches, which extract patch features using a pre-trained feature extractor and aggregate them for slide-level prediction

- Despite the critical role of feature extraction, there is limited guidance on selecting optimal feature extractors to maximize WSI performance
- This study addresses this gap by systematically evaluating MIL feature extractors across three dimensions: pre-training dataset, backbone model, and pre-training method
- Using two public WSI datasets (TCGA-NSCLC and Camelyon16) and employing four MIL models (ABMIL, DSMIL, TransMIL, and DTFD-MIL), this study is the first to undertake a comprehensive analysis focused on optimal feature extractor selection

ANALYSIS SETUP

1. Pre-training Dataset

- Most MIL models use feature extractors pre-trained on ImageNet-1K
- Recent studies show ImageNet-21K improves transferability and performance
- We explore whether larger, more diverse pre-training datasets lead to better WSI classification in MIL

2. Backbone

- Most MIL models use standard backbones like ResNet (CNN) and ViT (Transformer)
- We evaluate whether modern, larger backbones (e.g., ConvNeXt-B, Swin-B) —pre-trained with the same dataset and method—can generate stronger features that improve MIL robustness and generalization

3. Pre-training Method

- Self-supervised learning (SSL) is well-suited for medical imaging, where labeled data are limited
- Yet, it's unclear which SSL method best enhances MIL performance
- We compare four representative SSL approaches: contrastive
 (MoCoV2), non-contrastive (Barlow Twins), clustering (SwAV), and ViT-based SSL (DINO)

ACKNOWLEDGEMENTS: This research was supported by the Seegene Medical Foundation, South Korea, under the project "Development of a Multimodal Artificial Intelligence-Based Computer-Aided Diagnosis System for Gastrointestinal Endoscopic Biopsies" (Grant Number: G01240151).

EXPERIMENT

✓ Pre-training Dataset Size and Variety

- Pre-training on ImageNet-21K consistently improves WSI classification compared to ImageNet-1K across both CNN (ConvNext-B) and Transformer (ViT-S/16, Swin-B) backbones
- The performance gain is backbone-independent, suggesting that larger and more diverse pre-training datasets yield richer feature representations and stronger generalization
- ✓ Standard vs Modern Backbones

	TCGA-NSCLC									Camelyon16								
MIL Model	ResNet50 8.5M, IN-1K		ConvNeXt-B 43.2M, IN-21K		ViT-S/16 21.7M, IN-21K		Swin-B 86.7M, IN-21K		ResNet50 8.5M, IN-1K		ConvNeXt-B 43.2M, IN-21K		ViT-S/16 21.7M, IN-21K		Swin-B 86.7M, IN-21K			
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC		
ABMIL	85.08	89.90	87.94	92.97	84.60	93.13	85.72	90.12	78.30	74.84	75.64	61.79	78.04	72.61	81.65	77.62		
DSMIL	84.29	91.24	84.28	92.70	81.27	90.32	86.35	93.60	80.36	<i>77.</i> 57	79.33	75.01	73.64	75.48	74.68	73.11		
TransMIL	85.08	90.96	88.09	93.44	88.10	93.95	89.37	89.18	80.62	80.77	78.55	78.86	79.59	78.58	88.11	89.86		
DTFD-MIL	87.78	94.34	88.41	94.12	87.14	93.07	89.21	94.52	82.17	86.53	80.28	85.12	80.62	81.89	88.11	90.47		
Average	85.56	91.61	87.18	93.31	85.28	92.62	87.66	91.85	80.36	79.93	78.45	75.20	77.97	77.14	83.14	82.77		

- Modern and deeper backbones (ConvNeXt-B, Swin-B) outperform standard ones (ResNet50, ViT-S/16) on TCGA-NSCLC
- On Camelyon16, the modern Transformer-based (Swin-B) outperforms all others, while the modern CNN-based (ConvNeXt-B) underperforms compared to traditional CNN-based (ResNet50)
- This highlights **Transformers' advantage in modeling fine-grained small patterns** (e.g., small tumor ROIs) via self-attention and their ability to **scale reliably with deeper architecture**
- ✓ Self-Supervised Pre-training Methods

MIL Model	TCGA-NSCLC									Camelyon16								
	Barlow Twins ResNet50		SwAV ResNet50		MoCo V2 ResNet50		DINO ViT-S/16		Barlow Twins ResNet50		SwAV ResNet50		MoCo V2 ResNet50		DINO ViT-S/16			
																		ACC
ABMIL	87.78	93.99	85.87	93.27	85.71	89.86	90.48	96.83	91.47	92.06	94.83	95.14	76.74	73.03	94.06	94.57		
DSMIL	86.35	93.97	85.72	93.53	76.03	89.08	89.05	96.34	88.63	87.88	92.25	91.26	65.38	66.95	95.09	98.25		
TransMIL	89.68	92.11	89.84	95.69	88.41	92.55	92.86	95.64	93.28	94.26	94.83	96.64	93.02	94.4	97.15	98.10		
DTFD-MIL	89.21	91.97	89.52	95.66	70.32	76.82	93.18	97.62	91.18	94.97	94.83	96.46	64.60	63.16	97.41	98.07		
Average	88.26	93.01	87.74	94.54	80.12	87.08	91.39	96.61	91.14	92.29	94.19	94.92	74.94	74.37	95.93	97.25		

- SSL method and backbone choice greatly affect WSI classification
- DINO + ViT-S/16 outperforms others; MoCoV2 + ResNet50 performs worst on Camelyon16 due to contrastive loss sensitivity due to tissue similarity and class imbalance
- Pre-training method matters more than dataset domain—poor SSL (e.g., MoCoV2) on in-domain data can underperform compared to ImageNet pre-training

CONCLUSION

- Results show that SSL method choice has greater impact than indomain dataset selection alone
- We recommend Transformer-based backbones with deeper architectures over CNNs for improved generalization
- We also recommend larger, more diverse pre-training datasets to enhance feature quality and downstream performance

Graduate School of Data Science

