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• Cancer remains a leading cause of death worldwide, prompting the deep-
learning based computer vision community to develop various models to 
address this critical issue [1].

• However, we note that the deep learning community has neglected 
microscopy images, which have significant practical advantages over 
scanned images. Specifically, nearly every existing research has been 
conducted on scanner-based images [2]. Microscopes are significantly 
more affordable than scanners thereby offering significantly different 
accessibility to patients in third-world nations [3].
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Fig. 1.     denotes an image 

patch acquired by the scanner 

and      a region captured by a 

microscope. Microscopy 

images are composed of 

overlapping sequences 

manually captured by domain 

experts

1. ArbitraryLocations : Microscopic images are periodically produced, 
making it impossible to accurately capture the coordinates of where the 
produced images were acquired.

2. InconsistentLength : The number of images captured per slide varies 
due to the automatic image acquisition process.

3. Duplications : The image acquisition process often results in a large 
number of redundant images.

4. WeakLabel :  The absence of a whole-view, hundreds of images 
produced, make it very difficult for experts to annotate each images 
separately.

Fig. 2.     Overall Framework
✓ Data processing
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• Time series differencing We extract a feature sequence 𝑋 = {𝑥𝑖𝜖ℝ
𝑑|𝑖 =

1,2, … , 𝑛} using pretrained extractor. We applied time series differencing to 
remove duplications (Equation 1).

• Wavelet transformation Experts often capture narrow regions, causing 
similar symptoms to be filmed repeatedly. On the other hand, they 
occasionally move the slide glass to acquire images from entirely different 
regions. To mimic this pattern, we employ Wavelet transformation
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✓ Attention module

• We used self-attention module for input sequence and corss-attention for 
𝑋𝑠𝑡𝑏, 𝑋𝑟𝑝𝑑 .

✓ Attention Pooling (AP) module

• This module aggregates sequence into a point prediction.

✓ Objective functions

• The algorithm maps dynamic-length sequences closer to pre-defined 
target sequence. Because this is non-differentiable dynamic 
programming, we leverage the novel solution, Soft-DTW [4] 𝐷(∙,∙).

• we propose using the cumulative distribution function of a Beta(3,20) 
as an implicit target to address the weakly supervised nature of our 
image sequences (Fig. 4.). It is grounded in the empirical observation 
that experts find it challenging to capture regions exhibiting symptoms 
in a first frame due to the manual, high-zoom nature of the 
microscope.

Fig. 4. Static target and proposed implicit target.

• We propose a novel framework that treats microscopic image 
sequences as time-series data. By employing various inference 
strategies and a voting mechanism, we achieved superior results.

✓ Settings

✓ Ablation study

✓ Quantitative results

Table. 1. Dataset 

description. N and M 

indicates normal and 

malignant respectively.

Table. 2. Comparison results

We present combinations of ablations from (a) to (f) and plot the performance 

decreases compared to the fully equipped model.

• Various inference strategies Our proposed method offers four 
inference strategies: ො𝑦𝑎𝑝 prediction, DTW distance between ො𝑦𝑎𝑡𝑡𝑛 and 
𝑦𝑙 , KNN using ො𝑦𝑎𝑡𝑡𝑛

𝑡𝑟𝑎𝑖𝑛 and ො𝑦𝑎𝑡𝑡𝑛, and a majority voting of them.
• Quantitative results Our proposed method can predict the entire 

sequence without truncation and aggregate the entire sequence for 
a single prediction, combining the advantages of both approaches.

Fig. 4. We ablate (i) 

Wavelet transformation (ii) 

Implicit target (iii) 

Reference sequence yideal 

(iv) ℒ𝑎𝑙𝑖𝑔𝑛 (v) Attention 

module (vi) AP module. 
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